
The ISTQB Foundation Level –
Model Based Testing Extension

Bernard Melson & Angelina Samaroo
July 26th, 2019

Agenda

What is Model Based Testing

The different types of models

Summary and questions

Introduction to Model-Based Testing
Business Outcomes
1. Collaborate as part of a team
2. Apply and integrate
3. Create MBT models
4. Select and maintain test artifacts
5. Support the organisation to improve

its QA processes

Presenter
Presentation Notes
The ISTQB outlines anticipated business outcomes for its qualifications.

This qualification has been designed to show:

Collaboration - That MBT will support the capture and analysis of requirements, as part of the requirements engineering process. This will necessitate the MBT tester to communicate and work alongside other team members, in particular the BAs, system designers and product owners.
Apply and integrate - How MBT adjusts the activities in the test process - note that the syllabus outlines the Fundamental Test Process, not the Test Process (the latter appearing in 2018, the MBT syllabus was released in 2015 but has not yet been updated).:
Test planning
Test analysis
Test implementation and execution
Evaluation of exit criteria
Test closure
Create - How to create and use activity diagrams and state transition diagrams – the syllabus provides an example for each at Appendix A – these are basic diagrams, not necessarily showing all of the notation in the expected format (the activity diagram appears to show the check for a condition as an activity, as opposed to showing it on the line prior to the decision point; whilst the state diagram does not show the full notation on each transition). Our examples follow the notation provided for the activity diagrams and adds the full notation to the state transition diagram). However, we have copied their notation for the delegates to peruse, with the expectation that the examiners may use it as their guide for question setting.
Selection and maintenance of test artifacts - this has been categorised as input and output artifacts – inputs would include the test strategy and MBT process guidelines and the outputs would include the models themselves and the test cases/scripts generated from them.
Enable the improvement of QA processes – by increasing the quality of the test basis and test cases though the creation and verification of models, for instance.

In these ways, MBT helps not just the individual, but the team and organisation as a whole.

Note however that this course is all paper-based, so no laptops are required neither for the duration of the course nor the exam.

In addition, although MBT should be part of a wider group activity, where the modelling language and guidelines for how it will be used for a particular programme of work are discussed, tried and then agreed, this course does not require group work involving different stakeholders.

K3 elements of this course

1. Develop simple
models

2. Generate test cases
from the model

3. Apply given test
selection criteria

4. Perform updates of an
MBT model

Presenter
Presentation Notes
Following on from the Bloom’s taxonomy of learning objectives (LOs) used in ISTQB syllabi, this syllabus has:

K1 – recall – 9 LOs (45 minutes required teaching time)
K2 – explain – 22 LOs (5.5 hours required teaching time)
K3 – ability to use a technique – 5 LOs (5 hours required teaching time).

A K3 element is defined as ‘a doing element’. That is, demonstrating ability to use a technique or (in this course), the ability to create and use a model. For example, draw an activity diagram to match a requirement or set of requirements.
In a multiple choice exam this changes to ‘select the correct application of a technique’.

Here we show the specific K3 parts of the course. This is where they will be:

Creating models
Changing them as required to meet new requirements
Generating test cases
Assessing coverage achieved (such as decision coverage).

Each K3 element is required to take 1 hour. We have provided more examples than you might need – it will depend on delegate experiences – you may be able to adjust the timings as you go for each class.

The K3 elements are covered in sections 4 and 5 of the course. They require practise prior to the exam, so where you do not finish in class, set as homework.

Types of MBT Models
System model – e.g. Class diagrams

On time Late

0.6 0.9

0.4

0.1

Environmental model – e.g. Markov Chain

Test Model

Presenter
Presentation Notes
As you might expect there are many models which can be used for testing, depending on the level of abstraction and type of testing.

This syllabus focuses on three types:

System models:
These depict the system as it should be implemented. The tests then check the system against the model.
We will be using state machine notation later in this module.
Other system models include class diagrams. You may be familiar with these, used in object oriented development. Here the system is modelled as objects with attributes and methods (such as object – candidate; attributes – name; candidate id; method – provide proof of id). The class diagram above shows inheritance – the superclass is vegan foods, with those taking its attributes shown by a closed, but unfilled arrow head.

Environmental/usage models - I have not come across Markov chains before – so, according to Google, this is used to model behaviours of a system. In a Markov chain, the probability of transitioning to a state is solely dependent on the previous state and the time elapsed. In the diagram above, based on my experience of the UK rail system, if a train is on time this time, there is a 60% chance it will be on time again tomorrow. If it is late, then there is a 90% chance it will be late again tomorrow . Other environmental/usage models include as it happens weather forecasting, which would use more quantitative analysis than my simplistic view of train times, although weather forecasts are also notoriously wrong!
Test models – any graphical representation of a test case can be a model. This was taught in the CTFL. The diagrams drawn when using black-box techniques, such as equivalence partitioning, become models.
We will be exploring further activity diagrams and state diagrams next.

Activity Diagrams

Presenter
Presentation Notes
The activity diagram above shows:

Start and end nodes – these are the circles – filled in for start, bull's eye for end. The diagram above shows multiple end points, which could be joined up to meet the final end point to create enclosed regions. The BA course on modelling used these to form enclosed regions to calculate test coverage from test paths. We do not appear to be following that here.
Activities described in verb form – shown in the rounded rectangles.
Decision points – these are the diamonds. Note that we are used to (from flowcharts in the CTFL) showing the decision inside of the diamond, with the expected outcome annotated on the branches. The diagram above does not make it clear whether this is what is being followed here, since the activities are not real-world. The notes in the Appendix suggest that the decision is at decision points A and B, in line with my experience. However, a UKTB reviewer disagreed, so to comply, in our examples we have made the decision evaluations activities in their own right, however, we are still not clear that this is what is intended in the diagram above. Certainly it is not how I have seen it in the past - perhaps in this next review, the UKTB could let us know for sure?
Forks and joins – these allow modelling of concurrent/parallel flows of work. Forks must have exactly 1 incoming activity and 2 or more outgoing activities. Joins have 2 or more incoming activities, but only 1 outgoing activity (which may be an end point).
Links back to requirements – the diagram above has been annotated to show the links back to the requirements. This could cause the diagram to become cluttered, as we will see later, but may be useful for traceability back to the requirements (although to achieve bi-directional traceability we would need to tag the elements in the diagram and show these back in the requirements – yet more clutter). It may be an idea to label the diagram with a name reflective of the requirements to aid traceability to avoid this.
For the exam purposes we should probably stick to the notation above, but you might find delegates with experience pushing back.

A full description is given in the Appendix of the syllabus also.

Next we have 2 exercises in activity diagrams.

State Transition
Diagrams

Presenter
Presentation Notes
This diagram is taken from the syllabus. It mostly follows the diagrams taught in the CTFL with the following differences:

Start and end nodes as for activity diagrams
Full notation on transitions not shown – sometimes we see just events, sometimes we see just actions, sometimes we see both
Guards (qualifying events expected to be enclosed in […]) shown as if just events
Diamonds used to show merges and decision outcomes
The reasoning for showing Requirement 1 suggests that there should also be a label for Coffee selected
The reasoning for Requirement 2 – that payment is an important aspect, presumably over the others, does not appear to make sense – you would expect to model all aspects properly in order to get the machine to work and thus take payment for beverages.
It seems odd that the machine would allow you to make a selection and pay for it before telling you that it has run out of tea/coffee; then shut itself down – what if it has run out of tea but coffee is still available and I like coffee??

Worth going through these points with the delegates, so they can get a feel for why modelling is a labour intensive and possibly frustrating activity – it takes a certain mindset to do this effectively – perhaps not for everyone.

Languages for MBT Models
• Concepts
• Syntax
• Semantics
• Formalism
• Presentation
• Languages
• Integration

Presenter
Presentation Notes
The ways of defining models below will appear again in the next section. We may as well extend the time here to explain once. When you come across it in the next section, mention that we have covered it already.

Models are described according to this syllabus (UML has more points of conformance) by their:

Concepts – as we saw earlier, models can be based on the structure; data or behavioural aspects of a system.
Syntax – each model will have its own syntax that must be used, much like the syntax rules of programming languages – these are concrete rules. For MBT, we must also have rules for the syntax required for our models if we are to follow and automate successfully.
Static or structural semantics - describing things that are true at any given point in time – for example, in state machines, once we arrive at a state as defined, it will function as defined. Note that we defined structural models earlier as static models – describing such things as data. That definition is equally applicable here.
Dynamic semantics –describing the behaviour of the system – so in our example above, how we arrive at a state, and the actions resulting from an event can change over time depending on our starting state(s).

The rest of this section of the syllabus repeats what has been discussed already:

Modelling concepts – as discussed just a minute or two ago
Formalism – syntax and semantic rules to be followed, and how rigidly – the higher the abstraction level, the less formal we are likely to be.
Presentation – text descriptions or graphical formats. We are probably all aware of the value of the GUI interface when using computers. However pseudo-code gets us closer to the coding level – so models created using text descriptions can be easier to create models from, than the graphical notation.
Languages for structural models – as we learnt in the CTFL, this can be the code itself or a calling structure or hierarchy – (top-down or bottom-up for instance). As we said at the beginning of this course, UML has many diagrams – one relevant here would be a component diagram).
Languages for data models – such as the class diagrams we saw earlier, with the data values shown
Languages for behavioural models – these are the focus of this course, and we have just spent over an hour on these – so just summarise – we can also have Business Process Modelling Notation (BPMN) – also from the OMG, with its own notation, quite similar to activity diagrams.
Integration of the above – as we mentioned earlier, systems generally require use of more than one model for adequate representation. In MBT we would have to understand which parts of these models are suitable for our level of abstraction, and how that part could be automated sensibly.

Selection Criteria for Test Case Generation
• Requirements………………………..

• MBT model elements……………………………………

• Data-related…………………………….

• Random………………………………………………..……

• Scenario and Pattern-based……

• Project-driven…………………………………………….

Presenter
Presentation Notes
Here we revisit some of what has already been discussed – we will select test cases based on what the model has been designed to do.

This can be related to:

The requirements – this should be an obvious artifact – the model must show traceability back to the requirements at some level
The elements of the model themselves – clearly we would want to use the model to generate the tests according to its construct and purpose – so for state transitions we would want to show switch-coverage, or for a textual model we would want to show statement and decision coverage, for instance. If we had used equivalence partitioning or BVA, then we would want to test the data associated with this. We could also include pairwise, orthogonal arrays and classification trees for n-wise combinatorial testing (for those familiar with these techniques from ATA).
Random path testing - conduct a walkthrough of the model in a random fashion. Stochastic modelling can be used here – this is based on probabilities – like the Markov chain we saw earlier.
Scenario or pattern-based – we saw use cases in the CTFL – here we have main and alternate paths; our test cases would be generated according to each of these scenarios, where required.
Project-driven – as we saw earlier, we may have added more elements to our model to indicate areas of higher risk or priority. Our test case generation could then pick these out.

Examples of Test Selection Criteria

• State Transition coverage
• Decision Table condition/action/rule

coverage
• Equivalence Partition/BVA coverage
• Statement/Decision coverage/condition
• Pairwise testing
• Activity coverage

Presenter
Presentation Notes
As we saw in the CTFL, we can select test cases based on the coverage required:

State transition coverage – we could test at different levels of switch coverage, from 0 to all paths.
Decision tables – here we looked at the total number of permutations based on 2 to the power on n – n being the number of conditions. In this course we will add tests to check that each condition and action have been covered independently.
EP and BVA coverage – as for CTFL, with the 2 and 3 value methods for BVA.
Statement and decision coverage – we covered this in the CTFL. Here we add condition coverage, where a decision point comprises more than 1 condition.
Pairwise testing (and orthogonal arrays) - we can reduce or testing of combinations of inputs by pairing them, and testing each pair of inputs.
Activity coverage – as its name suggests, checking that each element on the activity diagram has been tested – the activities; the decision points and the paths.

We will try these out after the next slide.

MBT Test Implementation and Execution

• Abstract/concrete test cases
• Manual/automated test

execution
• Impact of changes on MBT

artefacts

Presenter
Presentation Notes
This section will cover these topics over the next slides.

Activities of Test Adaptation in MBT

• Tests generated to fill the gap
between abstract and concrete
test cases.

• Keyword-driven testing
• Export test cases
• Implement keywords

• Data-driven testing
• Provide concrete input data
• Link test data

• Provide post-conditions inside
the test scripts to be used as the
preconditions for the next one.

• Set up the precondition at the
beginning of each test script.

Presenter
Presentation Notes
This section in the syllabus refers to adapting the high level (abstract) test cases to turn them into low level (concrete) test cases with associated data.

In manual test case generation we add the specific details required to run the test. For instance we may select just one value from a partition in equivalence partitioning, or we may add data required to achieve the minimality criterion in classification trees.

In automated test execution we should create the test adaptation specification when we create the model. Then we:

May employ keyword driven testing – the keywords are defined in the model (such as 'Log on' or 'Open window') and used in the generated test cases. These test cases are then exported into the tool as test scripts in the language of the tool. The keywords are implemented using the specification for the test adaptation layer, in the language required by the test execution tool.

May employ data-driven testing – the MBT model will describe this data in abstract form (such as 'Book from Horror Genre'). Concrete input data is provided as required by the test adaptation layer, possibly stored in a spreadsheet or other data set (such as a list of books from different genre). The data from the MBT model is linked to the concrete test execution tool or harness.

Will need to set up the pre-conditions at the beginning of each test script (by adding a validation check to see if the required precondition has been met, before allowing the test to run).

May provide post-conditions inside the test scripts to be used as the pre-conditions for the next one, where possible. This would require coding where there is a dependency across scripts – possibly not maintainable in the long run.

Good Practices when using MBT

MBT

CM

RECI

Presenter
Presentation Notes
As we have seen already, MBT is part of test design, which in turn is part of the test process, from test planning through to test closure.

At the test planning stage, we need to decide upfront what our processes for managing and monitoring MBT will be.

Configuration management (CM) – hopefully it is clear by now that configuration management is key to any successful deployment. For MBT, we will need to trace:

The test model elements back to the test basis
The test cases to the test basis
The test scripts to the test cases
The test adaptation layer code to the specification
Any changes back to its source
The test basis used for the model against what is required now.

Continuous Integration (CI) – with the now wide adoption of automation to facilitate continuous integration to test builds daily or even more frequently. This includes testing the model used in MBT, especially when it is being used for continuous regression testing.

Requirements Engineering and Backlog Management (RE)
This is essentially the CM process described above – we must be able to trace back from MBT model artifacts to the originating documents. This can be a part of our Definition of Done in Agile.

Integration of the MBT Tool

Presenter
Presentation Notes
As we saw earlier, MBT has to be embedded in the overall test process. We of course are seeking automation as a route to efficiency gains.

Therefore, the MBT tool has to be configured to work alongside the other tools. In this syllabus this is called a tool chain. This comprises:

The requirements management tool – to store and provide traceability for the requirements, usually part of an ALM (Application Lifecycle Management) tool.
The test management tool – to store and provide traceability for the test cases; scripts; test runs and defects found – as above, also usually part of an ALM tool.
The test automation framework – here we mention just the test adaptation layer, but the framework could include all layers – test generation; test definition; test execution and test adaptation layers.
The MBT tool itself – all artifacts related back to the other links in the chain.

Summary – Model Based Testing

• A serious competency based programme that is designed to:
• Give you multiple competencies to increase your value
• Develop specialisms that are aligned to your talents
• Give organisations increased utilisation rates and reduced costs
• Engage employees with a real and compelling career growth plan
• Reduce organisational attrition rates

Contact Paula on 08000 199 337 or via email at enquires@tsg-training.co.uk

Presenter
Presentation Notes
As we said, this Senior Test Engineer stream sets out to help people develop the competencies and recognition people and organisations need today. We noted that ISTQB Advanced Test Analyst is a basic requirement, but offered 6 optional specialist routes to develop competency and recognition in:
Advanced Agile Testing;
Performance Testing (tool dependent);
Model Based Testing;
Test Automation;
DevOps (if not already sat in Stream 1);
Test Leader / Manager;
Technical Testing.

You can sit one of more of the optional paths to graduate as a Senior Test Engineer

More: Our next webinar on this subject is on September 9th at 12:30, when we will be addressing the programme for aspiring Lead Test Engineers/Test Managers, or people already in the role but who need formal recognition.

	The ISTQB Foundation Level – Model Based Testing Extension
	Agenda
	Introduction to Model-Based Testing
	K3 elements of this course
	Types of MBT Models
	Activity Diagrams
	State Transition �Diagrams
	Languages for MBT Models
	Selection Criteria for Test Case Generation
	Examples of Test Selection Criteria
	MBT Test Implementation and Execution
	Activities of Test Adaptation in MBT
	Good Practices when using MBT
	Integration of the MBT Tool
	Summary – Model Based Testing

